A FACILE S_Ni' REARRANGEMENT: THE FORMATION OF 1,2-ALKADIENYLPHOSPHONATES FROM 2-ALKYNYL PHOSPHITES

Victor Mark

Agricultural Research Division, Monsanto Chemical Company

St. Louis, Missouri

(Received 26 February 1962)

WHEN the conventional procedure for the preparation of trialkyl phosphites (i.e. phosphorus trichloride, alcohols and a tertiary amine) was applied in the synthesis of 2-alkynyl phosphites (I) - needed for a separate study fresh solutions of the preparations contained the expected phosphites in high yield and purity, as indicated by infrared and P³¹ nuclear magnetic resonance spectroscopy. Thus the freshly prepared solution of tris-(2propynyl) phosphite (II) in ether contained in its infrared spectrum the diagnostic acetylenic modes at 3.02 (spC-H stretching) and 4.71 μ (HspC-spC stretching) and so significant absorption at 8.0 μ (P \rightarrow 0 mode); the NMR spectrum exhibited only one peak, δ_{p31} -135 p.p.m., which is characteristic of trialkyl phosphites.¹ Re-examination of the solution after standing overnight at room temperature indicated extensive changes: the infrared spectrum acquired several additional bands, comprising strong maxima at 5.11 and 8.00 μ , and the P³¹ NMR spectrum indicated the presence of only one phosphorus species, at -17.9 p.p.m.

Similar behavior was observed also with the mixed phosphite, diethyl 2-propynyl phosphite, $(C_2H_5O)_2POCH_2C=CH$ (III): the acetylenic modes

281

¹ J. Van Wazer, C.F. Callis, J.N. Shoolery and R.C. Jones, <u>J. Amer. Chem.</u> <u>Soc.</u> <u>78</u>, 5715 (1956); N. Muller, P.C. Lauterbur and J. Goldenson, <u>Ibid.</u> <u>78</u>, 3557 (1956).

282

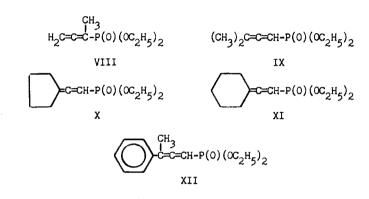
present in the fresh sample disappeared on standing and gave rise to bands at 5.15 and 8.00 μ , and the P³¹ resonance peak shifted from -137 to -14.4 p.p.m.

The changes in the P^{31} NMR spectra thus indicate that the P^{III} ester on standing rearranges to a P^{IV} (quadruply connected) phosphonate ester; the changes in the infrared spectra indicate that the $P^{III} \rightarrow P^{IV}$ rearrangement is accompanied by the disappearance of one H-C=C-CH₂-O-P moiety and the formation of the H₂C=C=CH-P \rightarrow O structure. The following transformations are thus indicated:

$$P(\operatorname{ocH}_{2}C \operatorname{CH})_{3} \longrightarrow H_{2}C=C=CH-P(0)(\operatorname{ocH}_{2}C=CH)_{2}$$

$$II \qquad IV$$

$$HC=CCH_{2}OP(\operatorname{oc}_{2}H_{5})_{2} \longrightarrow H_{2}C=C=CH-P(0)(\operatorname{oc}_{2}H_{5})_{2}$$

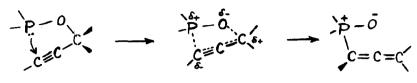

$$III \qquad V$$

Subsequent work established that the rearrangement of the phosphorous esters of 2-alkynols to the allenic structures is a general reaction and that variations in both the acetylenic alcohol and the trivalent phosphorus moiety are feasible.

The nature of the rearrangement was studied with the use of substituted 2-propyn-1-ols. The phosphite, $HO \equiv C-CH(CH_3)-OP(OC_2H_5)_2$ (VI), (λ characteristic: 3.02 and 4.72 μ) on rearrangement yielded a phosphonate (VII), (λ diagnostic: 3.12, 5.13 and 8.05 μ ; δ_{p31} : -14.8 p.p.m.) which was hydrogenated to a diethyl butylphosphonate ester, identical (by direct comparison of its physical and spectral constants) with authentic diethyl n-butylphosphonate and different from diethyl s-butylphosphonate. The H' NMR spectrum of VII showed the presence of one methyl group in the C₄ fragment and thus, together with the infrared, P³¹ NMR and hydrogenation data, indicated the following rearrangement:

$$\begin{array}{c} CH_{3} & H \\ HC = C - CH - 0 - P(0C_{2}H_{5})_{2} & \longrightarrow CH_{3} - C = C = CH - P(0)(0C_{2}H_{5})_{2} \\ VI & VII \end{array}$$

By similar methods the structures of the phosphonates VIII-XII were derived from the phosphites of 2-butyn-1-ol, 2-methyl-3-butyn-2-ol, 1ethynylcyclopentanol, 1-ethynylcyclohexanol and ethynyl methyl phenyl carbinol, respectively:


The 2-alkynyl phosphite \rightarrow 1,2-alkadienylphosphonate transformation can be rationalized by an internal 1,3-rearrangement (S_Ni' mechanism). The observed relative order of ease of rearrangement of the phosphites: (alcohol given)

$$CH_3$$
 CH_3
 $HC = C - CH > HC = C - CH_2 - 0H$ (and > $CH_3C = C - CH_2 - 0H$)
 $HC = C - CH > HC = C - CH_2 - 0H$ (and > $CH_3C = C - CH_2 - 0H$)

parallels the decreasing order of carbonium ion stabilities (and, hence, their ease of formations) and thus lends support to the internal (S_Ni) mechanism, for which the importance of the carbonium ion character of the participant alkyl group was emphasized.²

² D.J. Cram, <u>J. Amer. Chem. Soc.</u> <u>75</u>, 332 (1953).

The ease of rearrangement is probably the result of a very favorable, <u>planar</u> transition state between the acetylenic and allenic end structures through which the molecule passes with only small changes in the bond angles.³ The driving force of the reaction is apparently provided by the

energy gain associated with the $P^{\text{III}} \longrightarrow P^{\text{IV}}$ transformation. 4

Although very reactive, the allenyl phosphonates are readily isolable and characterizable compounds. Some of the characteristic constants include (compound, b.p. $^{0}/mm$, n_{D}^{25} , δ_{p31}): IV, 117/0.3, 1.4842, -17.9; V, 89/0.4, 1.4544, -14.4; VII, 105/1.0, 1.4497, -14.8; VIII, 73/0.1, 1.4587, -17.3; IX, 95/0.8, 1.4588, -15.0; X, 123/0.2, 1.4738, -17.3).⁵

The rather wide scope of the reaction can be illustrated also by variations in the phosphorus moiety, some of which are shown in examples XIII-XV:

 $H_2C=C=CH-P(0)[N(CH_3)_2]_2$ $H_2C=C=CH-P(0)(SCH_3)_2$ $H_2C=C=CH-P(0)(CH_3)_2$ XIII XIV XV

with the constants: XIII, 85/0.17, 1.5046, -23.9; XIV, 102/0.3, 1.5840, --; XV, 6 m.p. 58-60°, $\delta_{n,31}$: -41.0 (aqueous solution).

Due to the facility of the rearrangement, the formation of alkadienyl-

³ Allyl phosphites, for which no similar planar transition state can be constructed, are stable under comparable conditions.

⁴ The alkynyl phosphite-alkadienylphosphonate rearrangements are usually highly exothermic; in the absence of solvents or adequate cooling the reaction can become uncontrollably violent.

 $^{^{5}}$ All of the compounds gave satisfactory elemental analyses.

While present work was being concluded the formation of diphenyl propadienyl phosphine oxide from 2-propynol and diphenylchlorophosphine was reported by R.C. Miller, Abstracts of Papers presented at Chicago, September 3+8, 1961, Division of Organic Chemistry of the American Chemical Society, Paper No. 80, p. 43Q.

phosphonates could have escaped detection. A cursory perusal of the literature indicated for instance the description of propargyl esters of alkylphosphonous acids.⁷ Repeating the experimental procedure with ethylphosphonous dichloride yielded a product, b.p. $108^{\circ}/0.3 \text{ mm}$, n_D^{25} 1.5071, δ_{p31} -45.3 p.p.m. (reported constants: b.p. $126-7^{\circ}/6 \text{ mm}$, n_D^{12} 1.5015), the infrared spectrum of which indicated it to be 2-propynyl ethyl(propadienyl)phosphinate (XVI), instead of the reported di-2-propynyl ethylphosphonite (XVII):

$$cH_3cH_2 - P - cH = c = cH_2$$

 $cH_3cH_2 - P - cH = c = cH_2$
 $cH_3cH_2 - P (ocH_2c = cH)_2$
 $cH_3cH_2 - P (ocH_2c = cH)_2$
 $xvII$

The ease of rearrangement was established by the infrared spectrum of the reaction mixture taken immediately after the combination of the reactants: strong hands at 5.11 and 7.92 μ indicated the presence of the allenyl and phosphoryl modes, respectively. It is very likely that the other compounds described as alkylphosphonous esters⁷ also have the allenyl-phosphinate structures.

⁷ G. Kamai and E.A. Gerasimova, <u>Trudy Kazan. Khim. Tekhnol. Inst. im. S.M.</u> <u>Kirova 23</u>, 138-142 (1957); <u>Chem. Abstr. 52</u>, 9946 (1958).